À vos côtés tout au long de vos études

Sorbonne Université soutient sa communauté étudiante tout au long de sa formation.

Au travers de ses nombreux dispositifs d'accompagnement, nous œuvrons à votre réussite et votre épanouissement personnel durant votre vie étudiante.

Nous sommes à vos côtés

Étudier à
Sorbonne Université

C’est participer à la grande aventure de la connaissance, s’accomplir dans ses études et se préparer à créer le futur.

Le Chœur & Orchestre de Sorbonne Université

Le Chœur et Orchestre

Chaque année, le Cosu réunit plus d’une centaine de jeunes musiciennes et musiciens, enthousiastes et passionnés, autour d’un projet musical ambitieux qui poursuit nos missions éducatives et de transmission des savoirs.

Recherche et Innovation

Sorbonne Université promeut l'excellence au cœur de chacune de ses disciplines et développe de nombreux programmes interdisciplinaires à même de répondre aux grands enjeux du 21e siècle.

Recherche et Innovation

Formations

Découvrez toute notre offre de formation

En Arts, langues, lettres, sciences humaines et sociales / Médecine et métiers de la santé / Sciences et Ingénierie

Choisir Sorbonne Université, c’est intégrer un établissement pluridisciplinaire de renommée mondiale, donner le meilleur de soi-même pour suivre une formation de haut niveau, et rejoindre une communauté de plus de 55 000 étudiantes et étudiants, et 360 000 alumni dans le monde entier.

Arts, langues, lettres, sciences humaines et sociales

La faculté des Lettres est l’une des plus complètes et des plus importantes, en France et dans le monde, dans le domaine des arts, langues, lettres, sciences humaines et sociales. Ses domaines de spécialité sont multiples : les lettres classiques et modernes, les langues, lettres et civilisations étrangères, la linguistique, la philosophie, la sociologie, l’histoire, la géographie, l’histoire de l’art et l’archéologie, la musicologie, les sciences de l’information et de la communication, les sciences de l’éducation et la formation des enseignantes et enseignants.

Médecine et métiers de la santé

La faculté de Médecine assure l’enseignement des 3 cycles d’études médicales : de la PACES (intégrée à la faculté) au 3e cycle incluant des DES, DESC, DU et DIU. Les enseignements sont dispensés principalement sur deux sites : Pitié-Salpêtrière et Saint-Antoine. La faculté dispense également des enseignements paramédicaux : l’orthophonie, la psychomotricité et l’orthoptie. Le site Saint-Antoine intègre une école de sage-femme.

Sciences et Ingénierie

Couvrant tous les champs de la connaissance en sciences et ingénierie, la faculté des Sciences et Ingénierie s’attache autant à soutenir la recherche au cœur des disciplines qu’à favoriser les approches pluridisciplinaires pour répondre aux grands enjeux du 21e siècle. L’excellence académique est portée par ses enseignants-chercheurs et chercheurs dont les travaux de recherche nourrissent la qualité des formations dispensées par la faculté.

Elle regroupe 10 membres couvrant toutes les disciplines des lettres, de la médecine, des sciences et ingénierie, de la technologie et du management. Cette diversité favorise une approche globale de l’enseignement et de la recherche, pour promouvoir en commun l'accès de tous au savoir.

Alliance 4EU+

L’Alliance 4EU+

Dans un monde qui change, Sorbonne Université s’est unie aux universités Charles de Prague, Heidelberg, Varsovie, Milan et Copenhague, pour créer l'Alliance 4EU+.

Avec un modèle novateur d’université européenne, 6 grandes universités de recherche intensive répondent ainsi aux défis qui s’imposent à l’Europe.

Les Alliances de Sorbonne Université


Terre des hommes, terres du vin

Par François Legouy, Guillaume Giroir, Sébastien Dallot, Sylvaine Boulanger*

Université d'été

Profitez de la période estivale pour garder le rythme et vous enrichir grâce aux cycles de conférences ouverts à tout public durant le mois de juillet !
 



Un bouquet de légendes tchèques (Kytice) de K. J. Erben

Par Xavier Galmiche et Jiří Hanibal

Napoléon, le dernier Romain

Par Jacques-Olivier Boudon

Graduate

25 000

Étudiantes et étudiants

1 200

Enseignantes et enseignants

720

Personnels

Formations

Découvrez toute notre offre de formation

Médecine

La faculté de Médecine assure l’enseignement des 3 cycles d’études médicales : de la PASS (intégrée à la faculté) au 3e cycle incluant des DES, DESC, DU et DIU. Les enseignements sont dispensés principalement sur deux sites : Pitié-Salpêtrière et Saint-Antoine. La faculté dispense également des enseignements paramédicaux : l’orthophonie, la psychomotricité et l’orthoptie. Le site Saint-Antoine intègre une école de sage-femme.

Etudier à
la faculté de Médecine

La diversité des étudiants et de leurs parcours est l’une de nos richesses. Sorbonne Université s’engage pour la réussite de chacun de ses étudiants et leur propose une large offre de formations ainsi qu’un accompagnement adapté à leur profil et à leur projet.

La vie associative

La diversité des étudiants et de leurs parcours est l’une de nos richesses. Sorbonne Université s’engage pour la réussite de chacun de ses étudiants.

21 393

usagers

17 527

étudiants

715

hospitalo-universitaires

12

centres de recherche

Chiffres-clés


Découvrir les dernières parutions

Toutes les parutions

La Rue qui nous sépare

Par Célia Samba

Les langues de la médecine

Par Pascaline Faure

La médecin

Par Karine Lacombe, Fiamma Luzzati

Une infectiologue au temps du corona

Le Cinéma intérieur

Par Lionel Naccache

Projection privée au cœur de la conscience

Face aux risques

Par Pascal Griset, Jean-Pierre Williot, Yves Bouvier

Une histoire de la sûreté alimentaire à la santé environnementale

Sorbonnavirus

Par Pierre-Marie Chauvin et Annick Clément

Regards sur la crise du coronavirus

L'œuvre “Miraikan” au National Museum of Emerging Science and Innovation
  • The Conversation

Décrypter notre génome grâce à l’intelligence artificielle

Toutes les cellules de notre corps contiennent la même séquence d’ADN, le même génome. Et pourtant il existe une grande variété de types cellulaires, par exemple les fibres musculaires, les cellules de la peau, du sang ou encore les neurones

Dans chacun de ces types cellulaires, certains gènes sont exprimés, c’est-à-dire que la séquence d’ADN correspondante est transformée en ARN puis en protéines, alors que d’autres sont éteints. Les instructions qui garantissent une expression coordonnée de ces gènes au cours du développement, puis dans chaque tissu de chaque organe, sont elles-mêmes inscrites dans le génome.

Seuls 2 % de notre séquence d’ADN code pour des protéines et c’est dans les 98 % restant du génome que l’on cherche actuellement à comprendre le programme de coordination de l’expression des gènes.

C’est donc dans un livre de 3 milliards de lettres (imaginez un roman d’un million de pages !) qu’il faut décrypter les règles de ce programme.

C’est là que l’intelligence artificielle va jouer un rôle important. Mais avant de comprendre comment, il nous faut résumer ce que nous savons sur la façon dont est mis en œuvre ce programme.

Des coffres verrouillés

Les premières réponses obtenues montrent que c’est la manière dont se replie la molécule d’ADN au sein des chromosomes qui définit le programme de régulation des gènes. Une image simplifiée de ce repliement serait celle d’une chambre forte dans une banque.

Chaque coffre contient un gène, et la séquence de ce gène est utilisée pour fabriquer une protéine seulement si ce coffre est ouvert. Chaque coffre est verrouillé par une serrure à combinaison et seules quelques combinaisons sont capables de l’ouvrir.

Dans cette image, chaque cellule est une réplique de la chambre forte, une combinaison est un ensemble de facteurs de transcription, et pour chaque gène – chaque coffre – existe une combinaison unique, spécifique à la cellule. Cette combinaison correspond à l’ensemble des facteurs de transcription présents dans la cellule. Ces facteurs de transcription activent ou inhibent les gènes en se liant sur la molécule d’ADN à des endroits précis.

Ainsi, à une combinaison de facteurs de transcription donnée correspond un ensemble de coffres déverrouillés et un ensemble de gènes exprimés. Dans les différentes régions d’un embryon en train de se développer, ces facteurs peuvent être présents ou absents, et la réaction de notre génome à leur présence ou à leur absence permet l’apparition de tissus spécialisés aux endroits voulus.

À gauche, un domaine génique contenant un gène, trois amplificateurs et flanqué de deux isolants. Trois facteurs de transcription, représentés par une carrée, un rond, et un triangle, vont, lorsqu’ils sont présents dans la cellule en nombre suffisant, se lier à un amplificateur du gène pour permettre son expression. À droite, chaque domaine génique peut être comparé a un coffre-fort. Dans cette image, les isolants correspondent aux parois du coffre, les amplificateurs aux mécanismes de serrure. Le coffre s’ouvre si et seulement si les bons facteurs de transcription sont présents dans les proportions requises. Jean-François Dejouannet - MNHN / UMS 2AD / AIS, Author provided

La séquence de notre génome contient ainsi le plan qui permet de construire non seulement l’ensemble des coffres, mais aussi l’ensemble des systèmes de verrouillage de ces coffres. Ce plan fait intervenir deux types d’éléments, qui correspondent chacun à de petites séquences de quelques dizaines de lettres (A, C, T ou G). Tout d’abord les « isolants » permettent partitionner le génome, c’est-à-dire de définir là où commence et où finit chaque coffre. Ensuite les « amplificateurs » permettent de fabriquer le système de verrouillage qui valide ou invalide l’ouverture de chaque coffre. Pour avoir une idée de la taille et de la complexité de ce système, il faut imaginer que notre génome contient environ 30 000 gènes, un nombre similaire d’isolants, et des dizaines voire des centaines d’amplificateurs pour chaque gène.

Des expériences pour mieux comprendre

Pour mieux comprendre l’activité de tous ces composants au cours du développement, des expériences de grande ampleur sont réalisées aujourd’hui. Ces expériences reposent sur notre capacité à lire, ou séquencer, la succession des lettres du génome.

Les techniques de séquençage, qui était au paravent seulement utilisable sur des ensembles de millions de cellules, peuvent maintenant être appliquées aux cellules uniques.

Ces développements font entrevoir pour la première fois la possibilité de révéler simultanément l’ensemble des éléments régulateurs (isolants et amplificateurs) ainsi que leur activité dans les différentes cellules au cours du temps.

Bien que les recherches dans ce domaine avancent à grands pas grâce aux nouvelles technologies, une question reste en suspens : comment déterminer l’effet d’une variation du génome sur le processus de régulation des gènes ?

Cette question est d’une importance cruciale pour comprendre pourquoi certaines maladies ont une prédisposition génétique et ainsi comment mieux soigner un individu lorsque l’on connaît son patrimoine génétique.

On observe en effet couramment que certaines variations récurrentes du génome peuvent avoir un rôle dans l’apparition ou l’aggravation de maladies. La grande majorité de ces variations apparaît dans des régions du génome qui ne sont pas des gènes, mais des régions isolantes ou amplificatrices.

Un algorithme pour analyser les séquences d’ADN

Pour comprendre l’effet de ces variations du génome, il est maintenant possible de recourir à l’intelligence artificielle. L’idée est simple : utiliser toutes les données expérimentales obtenues jusqu’ici pour entraîner un algorithme à prédire l’activité des régions isolantes et amplificatrices en fonction de leur séquence génomique.

Pour cela, il faut tout d’abord convertir les quatre lettres A, C, T et G en langage binaire de 0 et de 1. Puis on entraîne des réseaux de neurones similaires à ceux qu’utilisent les algorithmes de reconnaissance d’images, utilisés par exemple pour numériser des documents manuscrits ou pour analyser les images des caméras embarquées de véhicules autonomes.

Toutes ces applications sont basées sur le même principe : convertir un ensemble de chiffres, appelé entrée, en un autre ensemble de chiffres, appelé sortie. Cette conversion s’obtient en plusieurs étapes. Un ensemble de pré-sorties sont calculées par la multiplication de chaque chiffre de l’entrée par un coefficient puis par l’addition des résultats obtenus. Ce processus est répété en changeant les coefficients pour générer des centaines ou des milliers de pré-sorties qui vont constituer une couche du réseau. L’ensemble des pré-sorties de cette première couche sert d’entrée à une deuxième couche. Plusieurs couches sont ainsi empilées jusqu’à la dernière, qui donne la sortie du réseau. Le processus d’entraînement consiste à fixer les valeurs des coefficients qui font correspondre chacune des entrées à la sortie correspondante. Pour tester ces valeurs et les optimiser, il faut ainsi faire des milliards d’opérations, toutes très simples. Cela est aujourd’hui possible grâce aux performances des cartes graphiques modernes développées initialement pour les jeux vidéo.

Un réseau de neurones est entraîné pour associer à une séquence d’ADN sa fonction d’isolant ou d’amplificateur, ainsi que la combinaison correspondant à son activation s’il s’agit d’un amplificateur. Le réseau peut ensuite être utilisé pour scanner le génome en entier et prédire les règles de régulation des gènes d’un individu. Jean-François Dejouannet - MNHN / UMS 2AD / AIS, Author provided

Dans notre cas, l’entrée va être une suite de 0 et de 1 qui correspond à une séquence d’ADN binarisée. La sortie va correspondre à une autre suite de 0 et de 1 qui va représenter une annotation fonctionnelle (par exemple 10 ou 01 pour « amplificateur » ou « isolant » et 00001000 ou 01000000 vont correspondre à différentes combinaisons de facteurs de transcription). Une fois l’algorithme entraîné, il devient alors possible de l’utiliser pour prédire l’annotation fonctionnelle d’une séquence dont on aurait changé une ou plusieurs lettres : les fameuses variations. Une équipe de chercheurs de l’Université de Princeton a ainsi testé les variations du génome connues pour être fréquentes chez les personnes autistes et a pu identifier comment elles modifiaient la combinaison de gènes exprimés dans les cellules du cerveau.

La même méthodologie a été appliquée à d’autres maladies parmi lesquelles la maladie de Crohn ou l’infection chronique à l’hépatite B. Dans les prochaines années, la médecine personnalisée devrait pouvoir utiliser cette méthodologie pour adapter un traitement en fonction de données génomiques recueillies pour chaque individu.

Julien Mozziconacci, Professeur en biologie computationelle, Muséum national d’histoire naturelle (MNHN) et Etienne Routhier, Doctorant en data science, Sorbonne Université

Cet article est republié à partir de The Conversation sous licence Creative Commons. Lire l’article original.